
For :
SantaCash

By :
Alex Papageorgiou @ CertiK
alex.papageorgiou@certik.org

Angelos Apostolidis @ CertiK
angelos.apostolidis@certik.org

SantaCash

Security Assessment

February 8th, 2021

[Preliminary Report]

 Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any
particular project or team. These reports are not, nor should be considered, an indication of the
economics or value of any “product” or “asset” created by any team or project that contracts
CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature
of the technology analyzed, nor do they provide any indication of the technologies proprietors,
business, business model or legal compliance.

CertiK Reports should not be used in any way to make decisions around investment or
involvement with any particular project. These reports in no way provide investment advice, nor
should be leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase
the quality of their code while reducing the high level of risk presented by cryptographic tokens
and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s
position is that each company and individual are responsible for their own due diligence and
continuous security. CertiK’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way
claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source code
provided to CertiK by a Client.
An organized collection of testing results, analysis and inferences made about the structure,
implementation and overall best practices of a particular piece of source code.
Representation that a Client of CertiK has indeed completed a round of auditing with the
intention to increase the quality of the company/product's IT infrastructure and or source
code.

Project Name SantaCash

Description A typical ERC20 implementation with enhanced
features.

Platform Ethereum; Solidity, Yul

Codebase EtherScan code

Delivery Date February 8th, 2021

Method of Audit Static Analysis, Manual Review

Consultants Engaged 2

Timeline February 5th, 2021 - February 8th, 2021

Total Issues 6

Total Critical 0

Total Major 0

Total Medium 0

Total Minor 0

Total Informational 6

 Overview

Project Summary

Audit Summary

Vulnerability Summary

ID Title Type Severity Resolved

STC-01 Library Naming Coding Style Informational

STC-02 external Over
public Function

Gas Optimization Informational

STC-03 User-Defined
Getters

Gas Optimization Informational

STC-04 Variable Mutability
Optimization

Gas Optimization Informational

STC-05 Redundant
Function

Gas Optimization Informational

STC-06 Ambiguous Use of
virtual

Volatile Code Informational

 Executive Summary

This section will represent the summary of the whole audit process once it has concluded.

 Findings

Type Severity Location

Coding Style Informational L19

 STC-01: Library Naming

Description:

The safeMath library name is not in CapWords.

Recommendation:

We advise to closely follow the Solidity naming conventions.

Type Severity Location

Gas Optimization Informational L79 , L82 , L85 , L88 , L91 ,
L94 , L101 , L105 , L110, L114

 STC-02: external Over public Function

Description:

The linked functions remain unused by the contract.

Recommendation:

We advise that the linked functions have their visilibity changed to external to save gas.

Type Severity Location

Gas Optimization Informational L79-L90

 STC-03: User-Defined Getters

Description:

The linked variables contain user-defined getter functions that are equivalent to their name
barring for an underscore (_) prefix / suffix.

Recommendation:

We advise that the linked variables are instead declared as public and that they are renamed to
their respective getter's name as compiler-generated getter functions are less prone to error and
much more maintainable than manually written ones.

Type Severity Location

Gas Optimization Informational L63-L65

 STC-04: Variable Mutability Optimization

Description:

The linked state variables are assigned to a literal in the constructor and are not updated
afterwards.

Recommendation:

We advise to change the mutability of the linked variables to immutable to save gas.

Type Severity Location

Gas Optimization Informational L146-L148

 STC-05: Redundant Function

Description:

The use of the _setupDecimals() function is to change the value of the _decimals state variable
in the constructor of an inhereting contract.

Recommendation:

We advise to remove the linked function.

Type Severity Location

Volatile Code Informational General

 STC-06: Ambiguous Use of virtual

Description:

The functions in the STC contract ambiguously use the keyword virtual , as they are not
expected to be overriden.

Recommendation:

We advise to remove the keyword virtual from the linked functions.

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but
generate different, more optimal EVM opcodes resulting in a reduction on the total gas cost of a
transaction.

Mathematical Operations

Mathematical Operation exhibits entail findings that relate to mishandling of math formulas, such
as overflows, incorrect operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an
incorrect notion on how block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only
functions being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases
that may result in a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the
result of a struct assignment operation affecting an in-memory struct rather than an in-
storage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of
private or delete .

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to
make the codebase more legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain
different code, such as a constructor assignment imposing different require statements on
the input variables than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw
format and should otherwise be specified as constant contract variables aiding in their legibility
and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to
compile using the specified version of the project.

Dead Code

Code that otherwise does not affect the functionality of the codebase and can be safely omitted.

